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TEMPERATURE COMPONENT METHOD
FOR HEAT CONDUCTION PROBLEMS

JANUSZ JANKOWSKI

ABSTRACT. The work includes a solving proposal for initial-boundary value 3D heat con-
duction problems. The proposal is based on an extension of the body model region to the
whole space where the space integral as a particular solution to the initial-boundary value
problem is derived. Temperature component is separated from the space integral. The com-
ponent admissibility conditions are formulated. For numerical purposes the approximated
integral with a discrete set of fictitious components is proposed. The fictitious component
intensities are determined on an approximate way from the boundary condition. An ap-
proximate solution of the heat conduction problem is obtained by extension in time and
contraction in space of the approximated integral.

1. Introduction

The method of fictitious sources for heat conduction has been developed by Stefaniak
[1]. The solution to direct and inverse problems may be found in [2-5]. Comparison with
the results obtained with FEM and BEM is presented in [6]. A generalization of the method
on the problems with an inhomogeneous initial condition appeared in [7]. The paper [8]
refers to the method of temperature source applied to the problems with inhomogeneous
initial conditions. A method of temperature component presented here contains some gen-
eralizations of the above ideas made to the three-dimensional problems.

The temperature component method (TCM) enables solving linear problems of heat con-
duction for homogeneous and isotropic bodies. In particular, the temperature field and
heat fluxes may be determined this way. The boundary conditions divide the boundary
surface into separate parts at which the 3rd kind thermal boundary condition, imposing a
connection between heat flux and temperature field, the 2nd kind condition with given heat
flow, and the 1st kind, with imposed temperature distribution are given. Nevertheless, in
the present paper the last two cases are considered as well as some realizations of the 3-rd
kind condition. The TCM required the space value problem to be formulated. Fictitious
extension of the body region to the whole space leads to the space value problem with
known solution. The field obtained this way turn out a particular solution of the primary
initial-boundary value problem. Verification of boundary condition with the help of the
particular solution gives an integral equation for the load determined beyond the body re-
gion. Therefore, a proposal was made that consisted in replacing multiple integrals of this
load for another function referred to as temperature component. Expressing of the temper-
ature component in terms of fundamental solution for the parabolic operator [9] in order
1
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to satisfy some component admissibility conditions leads to an integral equation. The de-
termination of the exact temperature component is often inefficient for the various shapes
of the boundary. Therefore, the temperature component is determined in an approximate
form named fictitious components, enabling to satisfy the boundary condition with im-
posed accuracy, and, at the same time, exactly observing the governing equation and the
initial condition.

Intensity values of the fictitious components located beyond the body region are deter-
mined in fictitious instants which takes on a discrete set named fictitious time. For this
purpose a bounded time interval named current time was introduced, in which the bound-
ary condition is verified. The testing instants divide the current time into particular sections
and create the set called testing time. The verifying algorithm of the boundary condition,
that is of recursive character with regard to the testing time, is based on the properties of
the fundamental solution for the parabolic operator.

The TCM is reckoned among the modified Trefftz methods searching an approximate solu-
tion of a boundary-value problem in the form of linear combination of singular fundamen-
tal solutions for the partial-differential operator, while the coefficients are determined from
the boundary conditions in the collocation nodes. The Trefftz‘s idea in the presented work
was extended and generalized in several directions. First of all, the method is extended to
initial-boundary value problems. In effect particular solution of the problem is obtained as
a new mathematical quality, as compared to the functions satisfying the governing equa-
tion appropriate for the Trefftz method. This enables accurate consideration of the initial
condition in the approximate solution. Secondly, the functions resulting from an extension
of the domain of the thermal field on the whole space (as opposed to the functions satisfy-
ing the governing equation of the Trefftz method) allow formulating the solution satisfying
the governing equation and initial condition strictly and the boundary condition in the col-
location nodes and the testing instants only. Thirdly, the TCM introduces the component
admissibility condition that ensure satisfaction of the governing equation and the initial
condition. This enables finding the solution for an arbitrary load in a natural way. In re-
sult a universal method is obtained, enabling solving the 3D heat conduction problems for
imposed initial conditions and loads of the area of any types of boundary conditions and
sufficiently smooth boundary surfaces.

2. Governing equation

The theory of heat conduction relates to a homogeneous and isotropic model of a body
provided that the heat sources are subject to time-changes. Let R is for the set of real
number, and © the absolute temperature. The open set D of points in Euclidean space Z
occupied by a places inside a body model is referred to as the region. One shall call the
body as thermal free, if heat sources are absent inside and on the boundary of the region D
occupy in Euclidean space Z by the body. Let the body will be thermal free at the moment
ot € R and has the constant reference temperature oI’ of surroundings. In such a case the
thermal state shall meet the relationship

)] ] ({f, Ot) =T €D

For a new scale of temperature 7' = © — (7" and an initial instant 0 € R the process
is described by the temperature field: 7'(Z,t), £ € D, t > 0, where ¥ determines the
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place with regard to the reference system, and ¢ is the current instant. The interval (0, co)
is referred to as the fime, while (0, t] is the current time. A homogeneous and isotropic
material is described by Fourier relation

) ¢ (T,t) = =AT; (Z,1), zeD, t>0, i=1,3

where g; is the heat flux vector and A the thermal conductivity. Physical law for the process
is of the form of linear equation of heat conduction ([11], p. 13)

oT
ot
where W is the heat generated per unit volume and time, c the specific heat at constant
strain. Let us replace the g; vector in (3) relationship for the Fourier relation (2)

“4) Tjj (f,t):lai(m,t)**W( ) 0, Te D, t>0

K Ot
The thermal diffusivity k = )‘ determines the rate of temperature changes. Govern-
ing equation(4) may descrlbe the phenomena by means of the temperature, provided that
boundary loads and initial state are taken into account. This will lead to the initial-boundary
value problem, referred to as a model of the thermal process. The set {T' (Z,t), & € D}
is called the global, while the value T (%, t) the local thermal state.
Thermal flow through a face determined by a normal versor v; is defined by

It allows to follow heat fluxes in some arbitrary given directions.

(3) qj,; (f,t)-f—ec (f,t)—W(f,t) :O’ = D’ t>0

3. Heat conduction problem

The formula (4) is not sufficient for description of some thermal phenomena, if the ini-
tial state and the surroundings interactions on the boundary are not taken into account. This
results from the definitions of the region and the time as some open sets. Let us subtract
the region from its closure, thus obtaining the difference 0D = D \ D as a model, called
the boundary, of an object where the body get into touch with surround. Similar opera-
tion is performed with the time that is subtracted from its closure providing the difference
{0} = [0,00) \ (0,00) as a model of touch of the time with its surround, making an ini-
tial instant, when the infinite end of time is not a real number. Description of the process
should refer to the model of the body contact with an environment at the space-time bound-
ary called a limiting condition.

Let v; denotes the outward normal to the boundary 0D. For the process undergoing in the
time (0, 00) in the D domain the limiting condition is considered as an initial condition
for ¢ = 0 and boundary condition at 0D. The limiting problem includes the governing
equation

10T 1

©®) Ty (50) = 5 (30) = ——
0

L W (Z,t), zeD, t>0

initial condition

) T(70)=g(z), feD
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and boundary condition
B  oAT,; (Ft)v; (7 t) + T (7, t) =V (7, t) + T (7,t), 7€dD, t>0

The symbol g stands here for the initial state, V' the heat generated per unit surface and
time, « the surface conductance ([13], p. 19), ;7 the surrounding medium temperature.
Formulae (7)-(9) are referred to as the heat conduction problem. Boundary condition ex-
haust the boundary surface. Thermal 3rd type condition is defined at all parts of the bound-
ary. The 2nd type condition is obtained for & — 0, while the 1st one for & — co. Hence,
the o parameter defines actual type of the condition assigned to a particular parts of the
boundary surface. In the (7)-(9) system of equations the local thermal state appears at the
left sides of the equal signs. Let us called this state an unknown. The unknown is a subject
of mathematical operations defined as an operator. On the other hand, the right-hand sides
of the equations will be referred to as thermal load.

4. Space problem

Let us make a model assumption that the body region fictitiously occupies the whole
space Z. Let us define, for the model process undergoing in the time (0, 00) and in the
space Z, a continuous and bounded in infinity fictitious load, making a model of interac-
tions on the body

§:Z—R, lim |5(3)] < o,

©) W:Zx(0,00) =R, lim ’W(z,t)‘ < o0,
7eZ, t>0

We assume that new loads imply similar process as the one occurring in the considered
body region

(10) §()=g(z), WEH=W(ED, ZeD, t>0
For the heat conduction problem in fictitious region such temperature field is required
(11) T:Zx(0,00) = R
that satisfy the following space problem:

Ty (26) - L2 (z,6) = - LW (1), 7€Z t>0
(12) T(2.0)=3(7), ez

lim,_ o 'T(E, t)‘ < 0, ZeZ, t>0

Let us consider an auxiliary problem

L 1aT . 3
111,]‘]‘(2»0—;@(2775):0, z7eZ t>0
(13) 1T(2,0)=g(2), zZeZ
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Let F' means a fundamental solution to the parabolic operator

0, t<0,ze”Z
(14) F@EH =10 t=0,Z#0
(2%)73 exp (—%) , t>0,27€Z
The F function satisfies the relationship
10F

- 7 1) — 7cD
Kat(z,t) 0, Z7eD, t>0

(15) Fj;(Zt) -

For a bounded and continuous function f the fundamental solution enables determining
the limit ([17], p. 347)

(16) /f(zJ)F(Z—T ndj — f(5), t—0
7

Properties of the F' function allow expressing the solution to the problem (14) by the for-
mula ([17], p. 361)

IT(Zt) :g(Z)*F(Z,t),

17 -
an F2)«FEZH)=[fWF(Z-y t)dy, Z€Z, t>0
z

The denotation (Z)# will be called a space convolution multiplication on the set Z, and
its result is a space convolution. The improper boundary condition is met thanks to the
properties of the fundamental solution to the parabolic operator and from condition (10)
that g is the load limited in infinity. Solution to the next auxiliary limiting problem

. 10T 1 -~ o
(18) T (2,0)=0, ZeZ

lim [T (Z)t)]| <0, Z€Z,t>0
has a form ([17], p. 367)

T (2,1) = %W(Zx 0,0)*F(2,t), Z€Z, t>0
0

19)

f(Zx(07t))*F(z“,t)E//f(gﬁs)F(Z—gj,t—s)dgjds
0 Z

Symbol (Z x (0, t))« is named a space-time convolution multiplication on the set Z x (0, t),
and its result a space-time convolution. For an arbitrary integrable function f the following
formula is valid

(20) %[f (Z x(0,0) * F(Z,8)] = w [ (£ x (0,8)) x F (Z,)] = [ (Z,1)
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Similarly to the solution (18) the improper boundary condition is met thanks to the prop-
erties of the F' function and from condition (10) that the load is limited in infinity. Sum of
the solutions (18) and (20) is the exact solution to the space problem

21) T(zt) = %W(z $ (0,0)* F(Z,6)+§(Z2)«F(Z,t), ZeZ

0
The functions convolutionally multiplied by F' are assumed in continuous and bounded
manner, hence, the formula (22) also presents a continuous and bounded function in the
Cartesian product Z x (0,t), where ([17], pp. 361, 363). The limit transition ¢ — 0
transforms the (22) formula into the Cauchy condition
(22) }in%T(Z,t):g(E), 7ez
This results from the property of (17) and zero-measure of current time in the space-time
convolution. An interesting property of the F' function arises in consequences of the defi-
nition (16)

0

23) f(Z)* KJFJ‘]‘ (z,t)—mF(57t):| =0, Z€Z,t>0

The function (22) should describe thermal phenomena in the D region in a finite time.

5. Space integral

The formula (22) provides

- 10 - _ - 10 ..
50~ e T80 =3(2)s |85 00 - Lo P @)+
(24) —l—iW(Z x (0,t)) « F ;; (Z,t) — iQ[I/T/ (Z x (0,t)) = F (Z,t)]
0)\ 0)\ ot

Z7eZ, t>0

The equation (7) will be met provided the (24), (21), (11) formulae are used. Approaching
the equation (23) gives the condition (8) from the (11) formula. The formula (22) is referred
to as a space integral. It is substituted to the boundary condition (9)

(KW (Z x (0,t)) « F (Z,t) + §(Z) x F (Z,t)]v; (7, t) +

(25) a[=W(Zx(0,))* F(Z,t) +§(Z)* F(Z,t)] =V (7, t) + T (1),

~
oA
7€ dD,t>0

The expression (26) makes an integral equation with two unknown functions.
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6. Temperature fictitious component

Let us make use of the law of additivity of the integral as the set function

26) T(Zt) = %W(D % (0,4)) % F (Z,t) + g (D) % F (Z,1) + (W (1)
0
The (27) formula is called component integral. Its last term is
@D W(E = SW(Z\D)x (0.) « F(2:4) +3(Z\ D) « F (%)
0

The function ;W will be called the temperature fictitious source. The conditions required
for the function (28) to satisfy the formulae (7)-(8)

10
(28) Wi (Z8) = — =W (Z0) =0, W (20)=0, Z€Z.t>0

are called the source admissibility conditions. The (9) formula enables determining of the
temperature fictitious source

29) AW (P ) vy (Fot) +afW (7 t) = f(7t), T€dD, t>0
The following denotation is used here
f(7t) =V (Ft) + apT (7, t)
(30) —kW (Z x (0,t)) x F (7, t) + g (Z) = F (7, t)]v; (T, )
—O%[W(Z x (0,1)) * F (7,1) + ¢ (Z) % F (,1)]
Nevertheless, the temperature fictitious source determined this way usually do not satisfy
the admissibility conditions (29). The function (27) satisfies the equations (7)-(8). Should

the temperature fictitious source (28) meet the equation (30), a contracted (to the region
D) source integral may be obtained

3Bl T(@t)= %W(D % (0,1)) * F (T,t) + g (D) * F (Z,t) + ;W (1)
0
This could be an accurate solution to the heat conduction problem in the body region.

7. Approximate sources

Let D = D U D is a body region, inclusive of its boundary. The time (0, co0) will
be contracted to the interval (0, ¢] called the finite time. Replacement (W for the funda-
mental solution (15) leads to satisfying the source admissibility conditions. Therefore, an

approximate temperature fictitious source is defined as

P n

(B2 WEH=D D wl'F(Z—mijit—"'s), ZeD, te(0,f],"yecZ\D
=1 m=1

The function (33) is referred to as approximate sources, ,,% a fictitious place of the m-th

source, 's the 1-th fictitious instant, w;™ the capacity in the ,,,%/ place at the s instant, the set

{my : m = 1,n} fictitious location, and {'s : m = 1,n} a fictitious time. The fictitious

source (28) occurring in the formula (27) shall be replaced for its approximate form (33)

33 Tzt = O%W(D x (0,)) % F (Z,1) + g (D) * F () + $W (Z,1)
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This is an approximate integral. In the finite time (0, ] the boundary surface may be so
modeled as to make it independent on ¢. The outward normal appears in the approximate
boundary condition does not depend on time. A sufficient condition for the temperature
fictitious source is the approximate integral satisfying the (9) formula

(34) 0AGW 5 (7 ) vy (7 ) + oW (7, t) = [ (7,t), 7€ adD,te (0,1

This is an equation for the capacities of approximate sources (33). Now the definition (33)
is substituted into the equation (35) that provides

P n

35 > > wl'G, (Ft)=f(7t), FeaD, te (0,f],w" eR™yecZ\D
=1 m=1

where

(36) G!

m

(7?, t) = OAEj (7_"* mgyt - lS) + aF (T_"* mgat - lS)
Let the set 't : m = 1, n to be referred to as a test time and let ¥¢ < *+1¢ k= 1,p— 1.
This allows replacing the (36) equation by the set of equations
p n
37 SN wiGh, (75t = f (7, 5t), 7eaD,*t e (0,
=1 m=1
Let us assume

(38) lg

The F function vanishes for !s > ¥t irrespective of ,,,7, while for s < ¥t does not vanish
in any place ,, i/

Fligls<lt, 1=2p

(39) f: f: w"G, (7, %t) = f (7%t), 7eoD,*te (0,7
=1 m=1
The w}" values may be determined in recurrent manner with respect to the test instants *¢
(40) znj w"Gl, (7, %t) = fi (7, %), 7€ 0D,*t € (0,7
Here the followinn;_dlenotations are used
(41) fr (F7) = £ (7 Ft) — kf i w"GL, (7 %), k=2p
=1 m=1

Lets cover the D boundary with a mesh 7, h = 1,n, where N > n. Then
n
@) > wpBl, = fi (W7 F)  wFedDFte (0.4], B, =G (170
m=1

The formula (44) is a recurrence with regard to the test time. The D boundary is a closed
surface, while analytical explicit presentation exists only for a straight faces obtained from
rectangle in result of extension, compression, and bending, without tearing off and gluing
([18], p. 95). The 9D surface may include singular points, i.e. edges or cone vertices.
Then, it is divided into regular surfaces, without singular points and, further on, into regular
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faces. A set of points in the space as a unique one-to-one and continuously differentiable
picture of a rectangle with its boundary is called a regular face

(43) 7F=pw), w=(wi,ws)

A close rectangle in the plane of the parameters (w1, ws) is a domain of the function, of
the derivatives denoted j;,7 = 1,2. Unit normal to the regular face for gw = (gw1, ow2) is
defined by the formula

(44) v (P (ow)) =F (h)_1 hi, hi =e€jpaby, d=p1(ow), b= P2 (ow)

Let us choose the sign of the normal v placed outside the regular face which is cutting out
from the closed surface ([18], p. 108). For the regular face h # 0 is always valid ([18], p.
96). A parallel face located in the distance d from the regular face (44) is defined by the
formula

(45) G=pw +di(pw), w=(wi,w)

One of the ways of approximate satisfaction of boundary conditions is provided by the
method of boundary collocation ([19], p. 8). We shall apply a modification of this method
named the method of boundary collocation in the least-squares approach ([19], p. 13).
For a fixed test instant *t € (O,ﬂ a set of faces parallel to the selected regular faces on
the boundary is defined. Let us defined the collocation nodes »7, h = 1,;N of the
first face (44), cut out from the regular surface on 9D. The fictitious places ,,if, h =
1,1n, 1n < 1N shall be determined on the part of the first parallel face (46) in the
distance 1d, that does not intersect the boundary. Let us defined the collocation nodes
w7, h =2,5N on the second face (44) cut out from the regular surface on the boundary.
A mesh ,,i, h = 1,1n, 1n < 1N corresponding to it will be selected at the part of
the second parallel face (46) in the distance ;d, that does not intersect the surface 0D nor
the first parallel face. All the collocation nodes 5,7, h = 1, N and the fictitious location
(m¥, h=1,n) may be obtained by a recurrence with regard to the other regular faces
on 0D, assuming fictitious locations for the parts of parallel faces that do not intersect the
boundary nor previous parallel faces. Formula (43) for the test instant '¢ provides
(46) S wpBil, =f (7)) h=1N
m=1
The system of linear equations may be solved with the least-squares method [20]. Values
W™, m = 1,n minimize the variance of summarized error at the first regular face for the
test instant ¢
N n
(47) YH (N,n) = > [ (n't) = Y wiBj]? = min
h=1 m=1
A condition necessary for extremum of the variance ! H with respect to w® gives normal
equation

n N N
“3) ST wpr Y BUBH, =3 f () Bl k=1n
h=1 h=1

m=1
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Solution @}, m = 1, n represents the temperature capacities for the fictitious instant 's.
Measure of the error is given by standard deviation

49) ‘S(N,n)=+'H (N,n)/(N —n)

The measure may be applied if the values f (hf', 1t) of the definition (31) are statistically
correlated. Let us assume that such a correlation really exists. The w(", m = 1,n values
are accepted provided that the standard deviation 1.S (N, n) for the whole boundary 4D in
the test instant '# is smaller than given e. The formula (42) is recursively applied until the
test instant ¢

n
(50) > wyBR, =f (%) h=1N
m=1
Values @3*, m = 1,n minimize the variance of summarized error for the test instant 2¢
N
(51) H (N,n) = Z f2 (n7,? Z wh' B2 12 = min
h=1

A condition necessary for extremum of the variance 2H with respect to w3® leads to the
system

(52) Z ’”ZB ng BXZ, k=1n
m=1

A solution of this set of equations gives the values w3, m = 1,n for the fictitious
instant 2s. The solution is accepted when 2S (IV,n) < e. The measure may be applied if
the values f (hﬁ 2t) of the definition (41) are statistically correlated. Let us assume that
such a correlation really exists. The procedure is repeated for the next indexes [ = 3,p
in order to determine w]" values in fictitious location {,,% : m = 1,n} for the fictitious
time {’s : m = 1,n}. Recurrence procedure performed with respect to time from the
previous fictitious instances enable determining the capacities for the next fictitious instant.
Therefore, the approximate sources are derived as

P n
(53) CW(EH) =D Y w'F (- mit—"s), ZeD, te (0
=1 m=1
The approximate integral distribution may be obtained by substituting the function Cf‘W
into %
(54 T (Zt)= O—)\W(D x (0,t)) * F (Z,t) + g (D) x F (2,t) + $W (Z,¢t)

Fort > t boundary condition is not satisfied and the formula (55) ~is not even defined.
Nevertheless, the final instant may be freely late, hence, the function 7' may be considered
as approximate temperature field.
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8. Approximate solution

Distribution (55) enables determining approximate solution to the heat conduction prob-
lem
K
(55) T (Z4,t) = —
oA
The expression (56) represents an approximate solution to the problem (7)-(9). It is charac-
terized by local dependence of the heat generated per unit surface and time and surrounding
medium temperature, the dependence being intermediated by the boundary condition. The
solution meets the boundary conditions only in collocation nodes and in test instants. The
Fourier law allows to determine approximate form of the heat flux vector

(56) “q; (Z,t) = —kW (D x (0,1)) * F,; (£,t) — oAg (D) * F; (Z,1) — o0 \jW,; (2,1)

In (57) formula the global dependence of the heat source capacity, and the initial state is of
direct character. On the other hand, the indirect local dependence on the boundary condi-
tion adjusted by the capacities of approximate temperature sources enables the surround-
ings temperature and the boundary heat source to affect the distribution heat flux vector in
the region in any time instant . Thermal flow through a foil of the surface determined by a
normal versor is

W (D x (0,t)) = F (Z,t) + g (D) = F (Z,t) + W (&, 1)

(57) “q(&,t) = —kW (D x (0,t)) * F, (Z,t) — oAg (D) * F,, (Z,t) — 0 \jW,,, (%, 1)
A full description of thermal phenomena by means of the temperature is determined (ap-
proximately) by the formula (57) in each place inside the body in the time. The thermal
fields (58)-(59) only provide more extensive illustration of the course of the considered
process that is useful for further application.

9. Conclusions

The paper presents a method of solving the quasi-static problems of heat conduction
named the method of temperature sources. The new distributions of the initial state and
heat generated per unit volume and time enabled solving the space problem in a fictitious
unlimited medium. Convolution products of thermal loads by fundamental solution to the
partial differential operator have been obtained in result. Components of this products,
called fictitious sources, have been used to verification of the boundary condition in the
finite time range with a method of boundary collocation in least-squares approach. In
order to locate the fictitious sources the regular surface faces have been applied. This
enables using a least squares procedure with respect to collocation places at the boundary,
in order to determine capacity values of approximate temperature sources. The solution is
continuously differentiable, thus enabling determining the distribution of heat flux vector.
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